720. Molecular Polarisability. Conformations of Certain Arylamines, -hydrazines, etc.

By M. ARONEY and R. J. W. LE FÈVRE.

The molar Kerr constants, dipole moments, refractivities, etc., are reported for Ph·NH·NH₂, (Ph·NH)₂, p-NH₂·C₆H₄·NH₂, (p-NH₂·C₆H₄)₂, NHPh₂, NPh₃, CHPh₃, and cyclohexylamine. The apparent (or average) conformations indicated by these measurements for each species as a solute are discussed.

THIS paper is connected with four others ¹ in which, inter alia, polarisability ellipsoids for the C-N and N-H bonds were specified and applied to a number of nitrogen-containing molecules. Hydrazine and the eight substances of Table 1 and 2 have now been examined by measurements of Kerr constants and dipole moments. Conclusions regarding their apparent conformations as solutes are given under "Discussion."

EXPERIMENTAL

Apparatus, Procedures, etc.—These have been as fully described before.¹⁻³ Symbols and methods of calculation used in this paper are defined and explained in refs. 2 and 3. Sodiumdried benzene or calcium chloride-dried carbon tetrachloride was the solvent employed. Solutes were redistilled or recrystallised, as appropriate, immediately before solutions were made up. Hydrazine, which presented difficulties, is dealt with separately below. Observations are listed in Table 1; when $w_2 = 0$ the following solvent properties apply: for benzene,

TABLE 1. Kerr effects, polarisations, etc., for solutions in benzene or carbon tetrachloride at 25°.

			Phenylh	ydrazine in	ı benzene.				
$10^5 w_2 \dots$	841	1293	1882	2458	3507	42	86	5149	
$10^7 \Delta B \dots$	0.010	0.014	0.022	0.032	0.042	2 0.0)54	0.067	
		wh	ence 10 ⁷	B = 1.15	$w_2 + 2.49$	w_2^2 .			
10 ⁵ w ₂	418	796	1103	1641	2349	26	64	3905	3919
ε ²⁵	2.2859	2.2983	2.3075	$2 \cdot 3243$	2.346	5 2·3	559	2.3952	$2 \cdot 3958$
d_4^{25}	0.8745		0.8757	0.8766	0.877	9 0.8	786	0.8807	0.8810
$10^5 w_2 \dots$	1725	2881	3325	5111					
Δn	0.0016	0.0027	0.0032	0.0048					
	when	ce $\sum \Delta \varepsilon / \sum w_2$	= 3.17, 2	$\sum \Delta d / \sum w_2 =$	= 0.175, 2	$\sum \Delta n / \sum w_2$	= 0.094	4.	
			Hydraze	obenzene in	benzene.				
$10^5 w_2 \dots$	1273	1509		1742	194	1	2113		2459
$10^{7}\Delta B$	-0.028	-0.03	3 –	-0.039	-0.0	42	-0.046		-0.024
Δn				0.0019					0.0029
	W	whence $10^{7}\Delta B$	$r = -2 \cdot 2$	$2w_2 + 1 \cdot 1$	$6w_2^2$, $\sum \Delta r$	$u/\sum w_2 =$	0 ∙113.		
$10^5 w_2 \dots$	562	1273		1509	1940	0	2163		2614
ε ²⁵	2.2845	$2 \cdot 2997$	2	2.3047	2.313	6	2.3188		2.3282
d_{A}^{25}	0.87493	0.8764	0 0)•87691	0.877	76	0.87829		0.87925
•		whence	$\sum \Delta \varepsilon / \sum w_s$	$_{2}=2\cdot 13$, $_{2}$	$\sum \Delta d / \sum w_2$	= 0.207.			
		1	p-Phenyle	nediamine	in benzen	е.			
$10^5 w_2 \dots$	239	253	257	' 2	290	306	31	4	345
$10^7 \Delta \overline{B} \dots$	-0.008		-0.00)9 —	0.010	-0.015	-0.0	012	-0.014
Δn	0.0003	0.0003	0.0	003					
whence $\sum \Delta B / \sum w_2 = -3.67$, $\sum \Delta n / \sum w_2 = 0.121$.									
$10^5 w_2 \dots$	228	239	253	; ;	257	306	34	5	
ε ²⁵	2.2794	$2 \cdot 2795$	$2 \cdot 279$	$8 2 \cdot 2$	798	2.2817	2.283	30	
d_4^{25}	0.87427	0.87432	0.8743	36 0.8	7436	0.87444	0.874	55	
		whence	$\Sigma \Delta \varepsilon / \Sigma w_{s}$	$_{2}=2.95$, 2	$\Sigma \Delta d / \Sigma w_2 =$	= 0.223.			

¹ Aroney and Le Fèvre, J., 1956, 2775; Proc. Chem. Soc., 1958, 82; J., 1958, 3002; J., 1960, 2161.
 ² Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577; Rev. Pure Appl. Chem., 1955, 5, 261.
 ³ Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. II.

Molecular Polarisability.

TABLE 1. (Continued.)

			Benz	idine in ben	zene.			
$10^5 w_2 \dots 10^7 \Delta B \dots$	$\begin{array}{c} 436 \\ -0.011 \end{array}$	$726 \\ -0.017$	791	$905 \\ -0.021$	$953 \\ -0.022$	$1028 \\ -0.024$	$1071 \\ -0.024$	$1098 \\ -0.026$
Δn			0.0014			0.0018	0.0019	0.0020
		whence	$\Sigma \Delta B / \Sigma w_2$	= -2.35,	$\sum \Delta n / \sum w_2 =$	= 0·178.		
$10^5 w_{\bullet} \dots$	700	763	791	820	980	1027	1097	1186
ε ²⁵	2.2862	2.2880	2.2883	$2 \cdot 2891$	$2 \cdot 2921$	2.2935	2.2944	$2 \cdot 2979$
d_4^{25}	0.87552	0.87564	0.87575	0.87580	0.87624	0.87631	0.87638	0.87658
		whence	$\sum \Delta \epsilon / \sum w$	$_2=2{\cdot}02$, Σ	$\Delta d / \sum w_2 =$	0.245.		
			Diphen	ylamine in l	enzene.			
$10^{9}w_{2}$	1440	1831	337		56 5		5194 079	
10 40	0.020	0.021 mh	1070	B = 1.92 m	1.10m	·000 0	.072	
		W1		$10 = 1.23^{3}$	$w_2 = 1.19w_2$			
$10^5 w_2 \dots$	1127	1835	347		91			
Δn	0.0014	0.0024	0.00	40 0·00	000			
			whence	$z \Delta n / \Delta w_2$	= 0.131.			
$10^5 w_2 \dots$	633	1127	151	9 18	35 2	171 3	8472	4591
ε ²⁵	2.2794	2.2850	2.289	$5 2 \cdot 29$	$28 2 \cdot 2$	$2968 2 \cdot :$	3116	2.3255
<i>d</i> ²⁰ ₄	0.87498	0.87586	0.876	531 0·87	730 0.8	37780 0·8	88033	
		whence	$\sum \Delta \varepsilon / \sum w$	$_{2} = 1.12, \Sigma$	$\Delta d / \sum w_2 =$	0.183.		
			Tripher	ıvlamine in	benzene.			
$10^5 w_2 \dots$	1440	3674	L I	5279	5618	7918	3 1	1.023
$10^7 \Delta B \dots$	0.010	0.022	2	0.034	0.036	0.05	1	0.076
		wh	ence $10^7\Delta$	B = 0.584w	$_{2} + 0.930w$	2 ² ·		
105	7649	09.00						
$10^{\circ}w_2 \dots$	7043	0.0110) 68					
$\Delta n_{\rm G}$	0.01238	0.013	98					
ŭ			whence X	$\sum \Delta n_{\rm D} / \sum w_2 =$	= 0·16 4 .			
1.05	774	1004		1090	1950	1090	,	9059
10 ⁻ w ₂	2.2773	2.279	1	2.2797	$2 \cdot 2811$	2.283	, 1 9	2952
d_{4}^{25}	0.87530	0.875	93	0.87618	0.87635	0.877	28 0	·87949
•		whence	$\sum \Delta \epsilon / \sum w_s$	$\Sigma = 0.609$, Σ	$\Delta d / \sum w_2 =$	0 ·194.		
		Trit	henvimeth	ane in carbo	n tetrachlor	ide		
10510-	766	170	1679	18	84	3560		
$10^7 \Delta B \dots$	0.002		0.004	0.0	05	0.009		
Δn	0.0020		0.0042	0.0	049	0.0089		
		whence	$\sum \Delta B / \sum w_2$	$_{ m h}=0.255$, Σ	$\Delta n / \sum w_2 =$	0.255.		
10570	421		766	16	79	1884		3560
ε ²⁵		:	2.2328	2.2	392	$2 \cdot 2419$		2.2522
d_4^{25}	1.58156		1.57926	-	_	1.57167		1.55952
		whence	$\sum \Delta \epsilon / \sum w_2$	= 0.746, Σ	$\Delta d / \sum w_2 =$	-0.696.		
			Cyclohe.	xylamine in	benzene.			
$10^5 w_2 \dots$	1344	2048	2879	3524	3993	4466	5878	6661
$10^7 \Delta B \dots$	0.006	0.009	0.012	0.013	0.012	0.016	0.0018	0.020
Δn $10^5 w_c$	7376	11 972	15 920	19 174	26 422	-0.0023	33,819	
$10^{7}\Delta B$	0.020	0.022	0.010	-0.005	-0.042	-0.051	-0.097	
Δn	-0.0036	-0.0056			-0.0123			
		For concent	trations u	p to $w_2 = 4$	466×10^{-5}	(inclusive)		
		$10^{7}\Delta B =$	$0.500w_2$ -	$-3.24w_2^2$, Σ	$\Delta n / \sum w_2 =$	-0.049.		
$10^5 w_2 \dots$	2048	2879	4466	5878	7376	11,972	15,920	
ε ²⁵	0.9114		2.3543	2.3807	2.4085	2.4908	2.5676	
	2.9114	0.000	2 0010	20001	2 1000	2 1000		
d_4^{25}	0.87342	0.87325	0.87303	0.87274	0.87252	0.87174	0.87088	

 $\varepsilon = 2.2725$, d = 0.87378, $n_{\rm p} = 1.4973$, $B = 0.410 \times 10^{-7}$; for carbon tetrachloride, $\varepsilon = 0.2725$ 2·2270, d = 1.5845, $n_{\rm p} = 1.4\tilde{4}575$, $B = 0.070 \times 10^{-7}$. When Δ precedes a symbol, a difference between solution and solvent is implied, e.g., $\Delta \varepsilon = \varepsilon_{12} - \varepsilon_1$. Table 2 contains the molar Kerr constants and total polarisations at infinite dilution, together with dipole moments, computed from the measurements recorded in Table 1.

Previous Determinations related to Table 2.—The following dipole moments (D) have been recorded (numerals in parentheses being references), for benzene solutions unless otherwise stated: $Ph\cdot NH\cdot NH_2$, $1\cdot 65-1\cdot 79$ (4); $Ph\cdot NH\cdot NH\cdot Ph$, $1\cdot 53$ (4), $1\cdot 66$ (5); $p-C_6H_4(NH_2)_2$, <0.3 (6), ~0 (7), 0.3 (8), ~1.5 (11), 1.51 (12), 1.56 (9); 1.49 (gas; 10); (p-NH₂·C₆H₄)₂, 1.43 (13), 1.3 (6-8), 1.6 (14); NHPh₂, 1.04 (15), 1.08 (16), 1.0 (17), 0.95 (18); NPh₃, 0.26 (19), 0.55 (15), 0.47 (18); CHPh₃, ~0 (liquid; 20), 0.62 (in CS₂; 21), 0.21 (22), 0.46 (in dioxan; 22); cyclohexylamine, 1.32 (23).

	TABLE 2	Calculation	of results
--	---------	-------------	------------

					$_{\infty}P_{2}$	$R_{\rm D}$		
	αε1	β	γ	δ	(c.c.)	(c.c.)	μ (D) *	$10^{12} \infty ({}_{\rm m}K_2)$
Ph·NH·NH,	3.17	0.203	0.063	2.80_{5}	93·84	34.76	1.67	16.7
Ph·NH·NH·Ph	2.13	0.237	0.075	-5.41_{5}	121.7^{-1}	$59 \cdot 1$	1.70	-80.0
p-NH2·C6H4·NH2	2.95	0.255	0.081	-8.95	87.4	34.5	1.58	-79.0
<i>pp'</i> -NH ₀ ·C ₆ H ₄ ·C ₆ H ₄ ·NH ₀	2.02	0.280	0.119	-5.73	$115 \cdot 2$	63.3	1.54	-85.0
NHPh,	1.12	0.209	0.087	3.00^{-1}	81.2	$57 \cdot 4$	1.01	40.6
NPh,	0.609	0.222	0.110	1.42_{4}	93 ·0	$83 \cdot 2$	0.52	33.3
CHPh, †	0.746	-0.439	0.175	3.64	83.7	77.9-	0.3	8.3
Cyclohexylamine	1.86	-0.020	-0.033	$1 \cdot 22$	69.1	31.1	1.33	10.6
* Cala 1057	Laima	4a1-am a 4	ha diatant	dam malam	insting	+ Transma	ined in Co	-1

* Calc., $1.05R_{\rm D}$ being taken as the distortion polarisation. \dagger Examined in CCl₄.

We confirm the higher polarities ascribed to p-phenylenediamine and benzidine by Tiganik⁹ and Sutton et al.¹⁴ respectively; agreement with literature is otherwise reasonably satisfactory. No determinations of molar Kerr constants antedate those of Tables 1 and 2, although the electric birefringences of one solution in benzene of p-phenylenediamine, two of hydrazobenzene, and one of benzidine were included by Lippmann in his 1912 Thesis (see ref. 24); B for supercooled phenylhydrazine is listed as zero in the I.C.T., Vol. VII.

DISCUSSION

Bond and group semi-axes of polarisability, now required for discussion, are:

	C-H	N-H	N–C	N-N	" Phenyl "
10 ²³ <i>b</i> ₁	0.064	0.050	0.057	0.062	1.056
$10^{23}b_{\rm T}$,,	0.083	0.069	0.077	1.056
$10^{23}b_{\rm V}$,,	0.083	0.069	0.077	0.672

The sources of the first three sets of these are in refs. 1 and 2; the "phenyl" semi-axes come from those $(1.12_0, 1.12_0, \text{ and } 0.73_6)$ recalculated from ${}_{\rm m}K_{\rm benzene} = 7.24 \times 10^{-12}$ and

- ⁴ Audrieth, Nespital, and Ulich, J. Amer. Chem. Soc., 1933, 55, 673.
 ⁵ Cowley and Partington, J., 1933, 1252.
 ⁶ Williams, Phys. Z., 1928, 29, 683.

- Williams and Weissberger, J. Amer. Chem. Soc., 1928, 50, 2332.
 Idem, Z. phys. Chem., 1929, 3, 367.
 Tiganik, Z. phys. Chem., 1931, B, 14, 135.
 Linke, Z. phys. Chem., 1940, B, 46, 261.
 Econductor and Williams Phys. C, 1020, 21, 262.

- ¹¹ Fogelberg and Williams, Phys. Z., 1930, 31, 363.
- ¹² Bretscher and Wagner-Jauregg, *Helv. Phys. Acta*, 1929, 2, 522.
 ¹³ Bretscher, *Helv. Phys. Acta*, 1928, 1, 355.
 ¹⁴ Everard, Kumar, and Sutton, *J.*, 1951, 2807.

- ¹⁵ Leonard and Sutton, J. Amer. Chem. Soc., 1948, 70, 1565.
- ¹⁶ Smith, J., 1950, 3532.
 ¹⁷ Barclay, Le Fèvre, and Smythe, Trans. Faraday Soc., 1951, 47, 357.
- ¹⁸ Cowley, J., 1952, 3558.
- ¹⁸ Bergmann and Schütz, Z. phys. Chem., 1932, B, 19, 401.
- ²⁰ Lautsch, Z. phys. Chem., 1928, B, 1, 115.
 ²¹ Bergmann, Engel, and Wolff, Z. phys. Chem., 1932, B, 17, 81.
- ²² Syrkin and Shott-L'vova, Acta Physicochim. U.R.S.S., 1944, 19, 379.
- ²³ Lewis and Smyth, J. Amer. Chem. Soc., 1939, 61, 3067.
- ²⁴ Tables Ann. Internat. de Constants et Données Numériques, Vol. II, pp. 355, 356

(I)

 $_{\rm E}P_{\rm benzene} = 25 \cdot 0_2$ c.c.; the $b_{\rm L}$ for the N-N link has been predicted from $r_{\rm N-N} = 1.45$ Å (cf. dimethylhydrazine in Allen and Sutton's list ²⁵) by Le Fèvre's equation, ²⁶ and $b_{\rm T}^{\rm N-N} = b_{\rm V}^{\rm N-N}$ accepted as half of the difference between $b_{\rm L}^{\rm N-N}$ and the total polarisability (0.215×10^{-23}) found by extrapolating the bond refractivities of Vogel *et al.*²⁷ to R_{∞}^{N-N} and multiplying by $9/4\pi N$.

Using these data, we now consider the molecular conformations apparently adopted by each of the solutes named in the following sub-titles.

Phenylhydrazine.—The principal axes are based upon those already given for aniline¹ and include the exaltations noted with this molecule in J., 1960, 2161. To provide maximum orbital overlap, the plane of the benzene ring is maintained parallel to a line joining N* and H*. The moment of H-N is 1.3 D (from $\mu_{\rm NH_3}$); hence the amino-group produces a component of 1.5 D acting at 55°

to the N-N longitudinal axis. The unit N*-N likewise

contributes a component of 1.5 D acting at *ca*. 43° to the C-N direction and in the plane containing b_1 and \bar{b}_3 of the phenylhydrazine molecule.

Calculations have been made for three conformations: (a) in which the plane of N*-Nand the bisector of the angle $H-N^*-H$ is at right-angles to the plane of N^*-N and the bisector of the angle H-N-C, and in which the free electron-pair of the NH₂ group is "trans" to the benzenoid ring; (b) as (a) but with the lone-pair "cis" to the benzene ring; and (c) in which the nitrogen atoms are twisted about the N-N line so that their four valency directions are anti-parallel. We find (all b values $\times 10^{23}$):

As the observed moment and molar Kerr constant is 1.6_7 D and 16.7×10^{-12} respectively, conformation (a) is advanced as a near approximation; it has a close relation to the "skew"

arrangement postulated by Penney and Sutherland²⁸ for hydrazine itself.

Hydrazobenzene.—Two conformations are considered; in either $\mu_{\rm res}$ acts parallel to the minimum polarisability axis b_3 . The models may be described by reference to (II). In (a) the plane containing

N-N and N-H bisects the opposing angle C-N-H, and the benzene rings are "trans" to one another and disposed to allow maximum orbital overlap with their respective nitrogen lone-pair orbitals; the largest polarisability semi-axis b_1 is taken as parallel to the N–C

In model (b) the b_1 , b_2 , and b_3 directions are retained as in (a) and longitudinal axis. each Ph·NH unit is rotated 30° upwards about the N-N axis, so that the two N-H bonds are making their closest approach.

We find (b values $\times 10^{23}$):

$$\text{for } (a) \begin{cases} b_1 = 2.90 \\ b_2 = 2.06 \\ b_3 = 1.75 \end{cases} \mu_3 = \mu_{\text{res}} = 1.7 \text{ D}, \\ \mathbf{m}K, \text{ calc.} = -182 \times 10^{-12}; \text{ for } (b) \begin{cases} b_1 = 2.61 \\ b_2 = 1.97 \\ b_3 = 2.14 \end{cases} \mu_3 = \mu_{\text{res}} = 1.7 \text{ D}, \\ \mathbf{m}K, \text{ calc.} = -32 \times 10^{-12}; \end{cases}$$

²⁵ Allen and Sutton, Acta Cryst., 1950, 3, 46.

- ²⁶ Le Fèvre, Proc. Chem. Soc., 1958, 283.
- ²⁷ Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 531.
 ²⁸ Penney and Sutherland, Trans. Faraday Soc., 1934, 30, 898.

and (b); ${}_{m}K$, calc. would, in turn, be less negative.

p-Phenylenediamine.—We consider first three conformations in which the $H \cdots H$ lines of the amino-groups are (a) both parallel to the plane of the benzenoid ring and on the same side of it, (b) one parallel and one perpendicular to the C₆-plane, and (c) both parallel to the C₆-plane but on opposite sides of it. The moment of each amino-group is taken as acting at 50° to the 1,4-line; in aniline the corresponding angle has been thought to be 43°; it would be 55° for a completely tetrahedral non-resonating system.

We predict (values of b's $\times 10^{23}$):

for (a)
$$\begin{cases} b_1 = 1.418\\ b_2 = 1.367\\ b_3 = 1.046 \end{cases} \mu_{\text{res}}, \text{ calc.} = 2.3 \text{ D}, \\ {}_{\text{m}}K, \text{ calc.} = \\ -197 \times 10^{-12}; \end{cases} \text{ for (b) } \begin{cases} b_1 = 1.418\\ b_2 = 1.396\\ b_3 = 1.016 \end{cases} \mu_{\text{res}}, \text{ calc.} = 1.6 \text{ D}, \\ {}_{\text{m}}K, \text{ calc.} = \\ -23 \times 10^{-12}; \end{cases}$$

for (c)
$$\begin{cases} b_1 = 1.418\\ b_2 = 1.367\\ b_3 = 1.046 \end{cases} \mu_{\text{res}}, \text{ calc.} = 0 \text{ D}, \\ {}_{\text{m}}K, \text{ calc.} = +6 \times 10^{-12} \end{cases}$$

An equimolecular mixture of (a) and (c) should show $\mu_{\rm res} = 1.6$ D and $_{\rm m}K = -95.5 \times 10^{-12}$ (against "found" values of 1.5_8 D and -79×10^{-12}), and an equimolecular mixture of all three forms should show $\mu_{\rm res} = 1.6$ D and $_{\rm m}K = -71 \times 10^{-12}$. Attention has also been given to conformations derived from (a) and (c) by rotations about the N-Ar bonds

of the NH₂ group by various angles θ . The case where $\theta = 0$ has been discussed in (a) and (c). The directions of action of the resultant moments are indicated by the "end-on" drawings (IVa-d). The cases where rotation is 20°, 30°, and 45° are considered, the semi-axes (×10²³) for the three sets of four isomers being:

for 20°
$$\begin{cases} b_1 = 1.42 \\ b_2 = 1.38 \\ b_3 = 1.03 \end{cases}$$
 for 30° $\begin{cases} b_1 = 1.42 \\ b_2 = 1.38 \\ b_3 = 1.03 \end{cases}$ for 45° $\begin{cases} b_1 = 1.42 \\ b_2 = 1.40 \\ b_3 = 1.02 \end{cases}$

TABLE 3. Calculated values for μ_{res} and $_{m}K$ for p-phenylenediamine.

	(IVa)	(IVb)	(IVc)	(IVd)
for $A = 20^{\circ} \int \mu$ calc. (D)	$2 \cdot 3$	2.1	0	0.8
$101 v = 20 (10^{12} M, calc)$	-170	-181	+7	+17
for $h = 20^{\circ} \int \mu$, calc. (D)	$2 \cdot 3$	$2 \cdot 0$	0	1.1
$101 v = 50 (10^{12} M, calc)$	-133	-157	+7	+27
for $A = 45^{\circ} \int \mu$, calc. (D)	$2 \cdot 3$	1.6	0	1.6
$101 v = 45 (10^{12} \text{mK}, \text{ calc.} \dots)$	-54	-104	+7	+59

Ph

[1960]

Equivalent mixtures of these would lead to moments and molar Kerr constants as follows:

θ	 0°	20°	30°	45°
$\mu_{\rm res}$ (D)	 1.6	1.6	1.6	1.6
$10^{12} M$	 -95.5	-82	-64	-23

Accordingly, we conclude that the conformations actually present are those in which NH_2 rotations of *ca*. 20° have occurred.

Benzidine.—With this molecule, rotations of the C_6 -rings have to be considered in addition to those of the amino-groups. First, let each NH_2 group be disposed towards its Ar-ring as in conformation (a) for p-phenylenediamine, and suppose that one half of the molecule rotates around the 4,1,1',4'-axis; if α is the angle of rotation (such that $\alpha = 0^{\circ}$ when the C_6 -rings are coplanar), then semi-axes, resultant moments, etc., are predicted as follows:

					$10^{12} {}_{\rm m}K$,						$10^{12} {}_{\rm m}K$,
α	$10^{23}b_{1}$	$10^{23}b_{2}$	$10^{23}b_{3}$	$\mu_{ m res}$ (D)	calc.	α	$10^{23}b_1$	$10^{23}b_{2}$	$10^{23}b_{3}$	μ_{res} (D)	calc.
0°	2.503	2.380	1.679	$2 \cdot 3$	-417	60°	$2 \cdot 503$	2.206	1.853	2.0	-206
30	,,	2.335	1.724	$2 \cdot 2$	-347	90	,,	2.030	2.030	1.6	-56
45	,,	$2 \cdot 279$	1.780	$2 \cdot 1$	-298	180	,,	2.380	1.679	0	+28

The nearest approach to the quantities observed is made when $\alpha = 90^{\circ}$. However, resonance effects between the two Ar-rings must be expected: they would exalt b_1 (so that the $_{\rm m}K$'s for all but the last form should be more negative than shown above); they would also tend to keep the C₆-rings in one plane. Accordingly, we have performed for benzidine calculations parallel to those made for conformations (IV*a*—*d*) of *p*-phenylene-diamine. Results are given in Table 4. Data in parentheses come from the use of the polarisability semi-axes ascribed by Chau, Le Fèvre, and Le Fèvre ²⁹ to the biphenyl molecule itself. Semi-axes calculated for rotations of 30°, 38°, and 45° are:

$$\text{for } 30^{\circ} \begin{cases} 10^{23}b_1 = 2 \cdot 50 \; (2 \cdot 7) \\ 10^{23}b_2 = 2 \cdot 39 \; (2 \cdot 4) \\ 10^{23}b_3 = 1 \cdot 67 \; (1 \cdot 6_4) \end{cases} \quad \text{for } 38^{\circ} \begin{cases} 10^{23}b_1 = 2 \cdot 50 \; (2 \cdot 7) \\ 10^{23}b_2 = 2 \cdot 40 \; (2 \cdot 4) \\ 10^{23}b_3 = 1 \cdot 66 \; (1 \cdot 6_3) \end{cases} \quad \text{for } 45^{\circ} \begin{cases} 10^{23}b_1 = 2 \cdot 50 \; (2 \cdot 7) \\ 10^{23}b_2 = 2 \cdot 41 \; (2 \cdot 4) \\ 10^{23}b_3 = 1 \cdot 65 \; (1 \cdot 6_3) \end{cases}$$

TABLE 4. Calculated values for μ_{res} and $_{m}K$ for benzidine.

	(IVa)	(IVb)	(IVc)	(IVd)
for $h = 20^{\circ} \int \mu$, calc. (D)	$2 \cdot 3$	$2 \cdot 0$	0	1.1
$101 \ b = 30 \ (10^{12} \text{mK, calc.} \dots)$	-260 (-312)	-313 (-356)	+29 (+42)	+73 (+77)
for $A = 38^{\circ} \{ \mu, \text{ calc. (D)} \dots$	$2 \cdot 3$	1.8	0	1.4
$101 v = 50 (10^{12} M, calc)$	-183(-239)	-253 (-294)	+30 (+46)	+99(+100)
for $\theta = 45^{\circ} \{ \mu, \text{ calc. (D)} \dots$	2.3	1.6	0	1.6
$101 v = 45 (10^{12} \text{mK}, \text{ calc.} \dots)$	-107 (-156)	-196 (-213)	+31 (+42)	+126 (+112)

Mixtures of equal parts should show dipole moments and molar Kerr constants as follow:

It is to be noted that a conformation in which the H \cdots H directions in the NH₂ groups are one parallel and one perpendicular to the biphenyl plane has the same semi-axes as have the forms represented by $\theta = 45^{\circ}$; the $\mu_{\rm res}$ and $_{\rm m}K$, calc. for this single conformation are numerically the same as those obtained for an equivalent mixture of the preceding four isomers. However, the $_{\rm m}K$ observed is -85×10^{-12} (*i.e.*, more negative than that forecast for either of the cases where the H \cdots H lines are mutually perpendicular); accordingly, we conclude that each of the actual conformations present in solution contains a planar biphenyl nucleus with the NH₂ groups rotated so that θ is *ca.* 38°.

²⁹ Chau, Le Fèvre, and Le Fèvre, J., 1959, 2666.

Triphenylamine.—Semi-axes predicted for three conformations are shown beneath (Va, b, and c):

In (Va) the planes of the benzene rings intersect along the line of action of μ_{res} ; in (Vb) and (Vc) the benzene rings have been rotated about the C-N bonds by 90° and 45° respectively from their dispositions in (Va). The angle C-N-C is (following Leonard and Sutton ¹⁵) taken as 114°.

 R_{∞} , computed from $R_{\rm D} = 83.2$ c.c. and $R_{\rm G} = 87.5$ c.c., is 78.6 c.c., whence $b_1 + 2b_2 = 9.34_6 \times 10^{-23}$ (the reasonable assumption being made that the polarisability ellipsoid of this molecule is one of rotation, *i.e.*, with $b_2 = b_3$). From the observed $_{\rm m}K$ and moment, semi-axes are accordingly calculable as $10^{23}b_1 = 2.53_7$, $10^{23}b_2 = 3.40_5$, or $10^{23}b_1 = 3.65_2$, $10^{23}b_2 = 2.84_7$. An exaltation in the total polarisability, $b_1 + 2b_2$, of 0.45×10^{-23} c.c. is thus seen. Since exaltation should be a maximum along the Ph–N directions, which are only 15° from the plane normal to $\mu_{\rm res}$, we select the first set of axes (with $b_2 = b_3 = 3.40_5 \times 10^{-23}$) as the more correct. A conformation midway between (Vb) and (Vc) [*i.e.*, with the phenyl groups rotated 65—70° from their positions in (Va)], or a mixture of these forms, therefore fits the measurements now recorded: with no allowance for exaltation, an equal-part mixture should show $10^{23}b_1 = 2.55$ and $10^{23}b_2 = 3.40_5 = 3.40_5$, if the exaltation is added to the $b_2 = b_3$ axes the corresponding values should be $10^{23}b_1 = 2.55$ and $10^{23}b_2 = 3.40_5$, in good accord with the result by experiment.

Triphenylmethane.—This molecule was investigated because of its relation to triphenylamine, N^{III} being isoelectronic with CH^{III}. The assumption that the conformation has axial symmetry is again made, so that b_1 is located along the C-H direction, and $b_2 = b_3$ are in a plane normal to the C-H line. From the dispersion data of Kikina, Syrkin, and Shott-L'vova,³⁰ R_{∞} is 77.97 c.c., whence $b_1 + 2b_2 = 9.271 \times 10^{-23}$. The observed molar Kerr constant is 8.3×10^{-12} , but the resultant dipole moment is very small and therefore doubtful; semi-axes have therefore been computed with $\mu = 0.3$ D or 0 D:

	with $\mu_{ m res}=0{\cdot}3$ D	with $\mu_{ m res}=0$ D
$10^{23}b_1$ $10^{23}b_2 = 10^{23}b_3$	$\left\{ \begin{array}{c} 2 \cdot 73_4 \\ 3 \cdot 26_8 \end{array} \right\}$ or $\left\{ \begin{array}{c} 3 \cdot 30_8 \\ 2 \cdot 98_2 \end{array} \right\}$	$\begin{pmatrix} 2 \cdot 81_2 \\ 3 \cdot 22_9 \end{pmatrix}$ or $\begin{cases} 3 \cdot 36_8 \\ 2 \cdot 95_1 \end{cases}$

Using bond and group polarisabilities in conjunction with a Ph-C-Ph angle ¹⁵ of 114°, we have calculated semi-axes for three conformations, (VIa-c) in which the benzene rings are disposed as in (Va-c) respectively. We obtain

	(VIa)	(VIb)	(VIc)
$10^{23}b_1$	 3·31 ₀	$2 \cdot 24_2$	2.776
$10^{23}b_2$	 2.82_{6}	3.35^{-}_{9}	3.09_{3}

Again an exaltation in $b_1 + 2b_2$ is revealed, and for the same reasons as with triphenylamine it suggests that, of the alternative solutions provided by our experimental data, those in which $b_2 = b_3$ exceeds b_1 are the more correct. Kikina, Syrkin, and Shott-L'vova³⁰ have drawn attention to the exaltation of molecular refraction exhibited by triphenylmethane, stating this to be much higher than would be expected from purely benzenoid structures. Since inter-ring conjugation appears here to be impossible, presumably the

exaltation is to be attributed to hyperconjugation involving the C-H link. When the exaltation of polarisability is distributed over the semi-axes $(b_2 = b_3)$ where it is most likely to occur, we have for conformations (VIb) and (VIc):

Comparison of these values with those from experiment indicates that the solute species in carbon tetrachloride resemble (VIc) much more than (VIb), or alternatively, that if a mixture of forms is present, (VIc) is predominant. It is of interest that Rousset and Pacault ³¹ suggest (from light-scattering measurements) that the benzene rings are rotated ca. 60° from the (VIa) conformation, while Adrian,³² from a priori calculations of steric energies, has more recently deduced the "equilibrium twist angle" as 50°, in harmony with our value of $ca. 45^{\circ}$.

Cyclohexylamine.—We have considered the amino-group to be attached equatorially to a "chair" cyclohexyl conformation, since cyclohexylamine hydrochloride has been reported 33 as "completely chair-equatorial." The bond moment of N-H is 1.3 D (from $\mu_{\rm NH_*}$), so that if the angle H-N-H is 110°, $\mu_{\rm NH_*}$ should be 1.5 D acting at 55° to the C-N axis. To obtain a molecular resultant of 1.33 D (the observed value) a component of ca. 0.3 D must act along the C \rightarrow N direction. On combination of these, μ_{res} must act at 67° to the N-C line. Carbon valency angles have been taken throughout as tetrahedral. Polarisability calculations have been made for the three conformations (VIIa-c), in which the centre-centre lines of the amino-hydrogen atoms and the 2.6-carbon atoms are respectively parallel, perpendicular, and parallel to one another. Details and results are shown below :

Conformation (VIIb) is clearly in best agreement with measurement.

Hydrazine.—Hydrazine hydrate was refluxed over sodium hydroxide pellets for 3 hr. under nitrogen, and the product twice distilled from fresh sodium hydroxide in a current of dry nitrogen; it had b. p. 113° . Solutions in benzene quickly become turbid (access of atmospheric moisture and carbon dioxide during our measurements could not be entirely prevented) and great difficulty was experienced in maintaining the high voltage across the Kerr cell; moreover, the brass electrodes in the cell were visibly attacked and gas bubbles (? nitrogen) were slowly formed. Hydrazine concentrations were found by titration with potassium iodate in acid solution (see Vogel ³⁴). A number of observations of electric birefringence, taken rapidly before conduction or discharge set in, were ultimately

³⁰ Kikina, Syrkin, and Shott-L'vova, Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1954, 563.

³¹ Rousset and Pacault, Compt. rend., 1954, 338, 1705.

³² Adrian, J. Chem. Phys., 1958, 28, 608.
³³ Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958, M 207.

³⁴ Vogel, "A Textbook of Quantitative Inorganic Analysis," Longmans, Green and Co., London, 2nd edn., p. 365.

3608

made, but accurate readings could not be achieved and we can safely report only a small positive effect with respect to benzene solvent for concentrations of *ca.* 0.3%. Such behaviour is not inconsistent with the N–N link's having semi-axes of polarisability: $b_{\rm L}^{\rm N-N} = 0.062 \times 10^{-23}$, $b_{\rm T}^{\rm N-N} = b_{\rm V}^{\rm N-N} = 0.077 \times 10^{-23}$, as derived at the beginning of this Discussion. The structure of hydrazine on the Penney–Sutherland²⁸ model is one in which the planes bisecting the H–N–H angles are at right-angles to each other. If bond angles are 110° and the polarisability ellipsoids for N–H as in ref.1, we have for hydrazine: $b_1 = 0.379 \times 10^{-23}$ and $b_2 = b_3 = 0.330 \times 10^{-23}$, since $b_1 + 2b_2 = 1.040 \times 10^{-23}$ (calc.²⁷ from $R_{\rm D}^{\rm N,H_4} = 9.03$ and $R_{\rm G}^{\rm N,H_4} = 9.28$ c.c.). The dipole moment ⁴ in benzene is 1.84 D. Accordingly, mK, calc. should be -9.0×10^{-12} . From ref. 4 we compute $\alpha \varepsilon_1 = 12.9$, $\beta = 0.66$, and $\gamma = 0.20$. The value of $\Delta B/w_2$ required to give mK = -9.0×10^{-12} is +0.90 which, for solutions of w_2 near 0.003, would correspond to a ΔB of $+0.003 \times 10^{-7}$.

We acknowledge with gratitude a gift of pure triphenylmethane from Miss J. Bosson. UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA. [Received, December 7th, 1959.]